If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 14y2 + -6y + 3 = 0 Reorder the terms: 3 + -6y + 14y2 = 0 Solving 3 + -6y + 14y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 14 the coefficient of the squared term: Divide each side by '14'. 0.2142857143 + -0.4285714286y + y2 = 0 Move the constant term to the right: Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.4285714286y + -0.2142857143 + y2 = 0 + -0.2142857143 Reorder the terms: 0.2142857143 + -0.2142857143 + -0.4285714286y + y2 = 0 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + -0.4285714286y + y2 = 0 + -0.2142857143 -0.4285714286y + y2 = 0 + -0.2142857143 Combine like terms: 0 + -0.2142857143 = -0.2142857143 -0.4285714286y + y2 = -0.2142857143 The y term is -0.4285714286y. Take half its coefficient (-0.2142857143). Square it (0.04591836735) and add it to both sides. Add '0.04591836735' to each side of the equation. -0.4285714286y + 0.04591836735 + y2 = -0.2142857143 + 0.04591836735 Reorder the terms: 0.04591836735 + -0.4285714286y + y2 = -0.2142857143 + 0.04591836735 Combine like terms: -0.2142857143 + 0.04591836735 = -0.16836734695 0.04591836735 + -0.4285714286y + y2 = -0.16836734695 Factor a perfect square on the left side: (y + -0.2142857143)(y + -0.2142857143) = -0.16836734695 Can't calculate square root of the right side. The solution to this equation could not be determined.
| -4n+12=-2n-16 | | 2x+5x-4x=(3) | | y=x^3+4x^2+5x | | (11x+12y)143=1248 | | x-(2-x)= | | y/2=8/y | | 45+24=24+45 | | 1.2/0.3=x/0.4 | | X+15=x+20 | | r/1.5 | | t^2+6t+3=0 | | 1/2=/28 | | h/12=5/4 | | 60/100=x/60 | | 4/14=2/x | | 2ln(x)=ln(6x-8) | | -4x-29(8x+1)=-(-2x-10) | | X^2+3x+60=0 | | 4/z=4 | | (3(24/7)-8) | | k/15=5/15 | | 5y-7+y+48=6y+50-3y | | y=(-255/6)*(-4/7) | | (x+1)+y=1.1 | | Y+2=6+4y | | 0=(x+5)(2x-5) | | 32=12/v | | 0=(2x-2)(x+4) | | -10k+18=14+4(-4k-20) | | 24y^3-30y^4= | | (2)/2/3 | | (6+8i)(4-7i)= |